欢迎光临春鹏电器官网!
全国咨询热线:18921561668
热门关键词: 公司简介公司资质
产品推荐
相关常见百科
当前位置:主页 > 新闻动态 > 常见问题 >

螺栓加热棒将PLL板JP1跳线脚短路

时间:2019-12-24 04:59:54 来源:未知 点击:

  自己制作一个简单的电感高频加热线圈金属加热线圈,类似电磁炉原理。防爆电加热器不会做。求牛人帮忙,都需要什么零件,怎么接...

  自己制作一个简单的电感高频加热线圈金属加热线圈,类似电磁炉原理。不会做。求牛人帮忙,都需要什么零件,怎么接

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  感应加热简介电磁感应加热,或简称感应加热,是加热导体材料比如金属材料的一种方法。它主要用于金属热加工、热处理、焊接和熔化。顾名思义,感应加热是利用电磁感应的方法使被加热的材料的内部产生电流,依靠这些涡流的能量达到加热目的。感应加热系统的基本组成包括感应线圈,交流电源和工件。根据加热对象不同,可以把线圈制作成不同的形状。线圈和电源相连,电源为线圈提供交变电流,流过线圈的交变电流产生一个通过工件的交变磁场,该磁场使工件产生涡流来加热。感应加热原理感应加热表面淬火是利用电磁感应原理,在工件表面层产生密度很高的感应电流,迅速加热至奥氏体状态,随后快速冷却得到马氏体组织的淬火方法,当感应圈中通过一定频率的交流电时,在其内外将产生与电流变化频率相同的交变磁场。金属工件放入感应圈内,在磁场作用下,工件内就会产生与感应圈频率相同而方向相反的感应电流。由于感应电流沿工件表面形成封闭回路,通常称为涡流。此涡流将电能变成热能,将工件的表面迅速加热。涡流主要分布于工件表面,工件内部几乎没有电流通过,这种现象称为表面效应或集肤效应。感应加热就是利用集肤效应,依靠电流热效应把工件表面迅速加热到淬火温度的。感应圈用紫铜管制做,内通冷却水。当工件表面在感应圈内加热到一定温度时,立即喷水冷却,使表面层获得马氏体组织。感应电动势的瞬时值为:

  对铁磁材料(如钢铁),涡流加热产生的热效应可使零件温度迅速提高。钢铁零件是硬磁材料,它具有很大的剩磁,在交变磁场中,零件的磁极方向随感应器磁场方向的改变而改变。在交变磁场的作用下,磁分子因磁场方向的迅速改变将发生激烈的摩擦发热,因而也对零件加热起一定作用,这就是磁滞热效应。这部分热量比涡流加热的热效应小得多。钢铁零件磁滞热效应只有在磁性转变点A2(768℃)以下存在,在A2以上,钢铁零件失去磁性,因此,对钢铁零件而言,在A2点以下,加热速度比在A2点以上时快。

  1.2感应环流,工件相当于一个短路的1匝线圈,与感应线圈构成一个空心变压器,由于电流比等于匝比的反比,工件上的电流是感应线圈中电流的N(匝数)倍,强大的感应短路电流使工件迅速升温。这个机制在任何导体中均存在,恒定磁通密度情况下,工件与磁场矢量正交的面积越大,工件上感生的电流越大,效率越高。由此可看出,大磁通切割面积的工件比小面积的工件更容易获得高温。

  实验中确实有加热效果,但是远远没有达到电源的输出功率应有的效果。这是为什么呢,我们来分析一下,显然,对于固定的工件,加热效果与逆变器实际输出功率成正比。对于感应线圈,基本呈现纯感性,也就是其间的电流变化永远落后于两端电压的变化,也就是说电压达到峰值的时候,电流还未达到峰值,功率因数很低。我们知道,功率等于电压波形与电流波形的重叠面积,而在电感中,电流与电压波形是错开一个角度的,这时的重叠面积很小,即便其中通过了巨大的电流,也是做无用功。这是如果单纯的计算P=UI,得到的只是无功功率。

  而对于电容,正好相反,其间的电流永远超前于电压变化。如果将电容与电感构成串联或并联谐振,一个超前,一个滞后,谐振时正好抵消掉。因此电容在这里也叫功率补偿电容。这时从激励源来看,相当于向一个纯阻性负载供电,电流波形与电压波形完全重合,输出的有功功率。这就是为什么要采取串(并)补偿电容构成谐振的主要原因。

  说得直白一点,并联谐振回路,谐振电压等于激励源电压,而槽路(TANK)中的电流等于激励电流的Q倍。串联谐振回路的槽路电流等于激励源电流,而L,C两端的电压等于激励源电压的Q倍,各有千秋。

  对于恒流源激励(如单管电路),应采用并联谐振,自由谐振时LC端电压很高,因此能获得很大功率。并联谐振有个很重要的优点,就是空载时回路电流小,发热功率也很小。值得一提的是,从实验效果来看,同样的谐振电容和加热线圈,同样的驱动功率,并联谐振适合加热体积较大的工件,串联谐振适合加热体积小的工件。

  明白了以上原理后,可以着手打造我们的感应加热设备了。我们制作的这个设备主要由调压整流电源、锁相环、死区时间发生器、GDT电路、MOS桥、阻抗变换变压器、LC槽路以及散热系统几大部分组成,见下图。

  从上图可以看出,C1、C2、C3、L1以及T1的次级(左侧)共同构成了一个串联谐振回路,因为变压器次级存在漏感,防爆电加热器回路的走线也存在分布电感,所以实际谐振频率要比单纯用C1-C3容量与L1电感量计算的谐振频率略低。图中L1实际上为1uH,我将漏感分布电感等加在里面所以为1.3uH,如图参数谐振频率为56.5KHz。

  从逆变桥输出的高频方波激励信号从J2-1输入,通过隔直电容C4及单刀双掷开关S1后进入T1的初级,然后流经1:100电流互感器后从J2-2回流进逆变桥。在这里,C4单纯作为隔直电容,不参与谐振,因此应选择容量足够大的无感无极性电容,这里选用CDE无感吸收电容1.7uF V五只并联以降低发热。

  S1的作用为阻抗变换比切换,当开关打到上面触点时,变压器的匝比为35:0.75,折合阻抗变比为2178:1;当开关打到下面触点时,变压器匝比为24:0.75,折合阻抗变比为1024:1。为何要设置这个阻抗变比切换,主要基于以下原因。(1)铁磁性工件的尺寸决定了整个串联谐振回路的等效电阻,尺寸越大,等效电阻越大。(2)回路空载和带载时等效电阻差别巨大,如果空载时变比过低,将造成逆变桥瞬间烧毁。

  T2是T1初级工作电流的取样互感器,因为匝比为1:100,且负载电阻为100Ω,所以当电阻上电压为1V时对应T1初级电流为1A。该互感器应有足够小的漏感且易于制作,宜采用铁氧体磁罐制作,如无磁罐也可用磁环代替。在调试电路时,可通过示波器检测J3两端电压的波形形状和幅度而了解电路的工作状态,频率,电流等参数,亦可作为过流保护的取样点。

  CD4046锁相环芯片的内部VCO振荡信号从4脚输出,一方面送到U2为核心的死区时间发生器,用以驱动后级电路。另一方面回馈到CD4046的鉴相器输入B端口3脚。片内VCO的频率范围由R16、R16、W1、C13的值共同决定,如图参数时,随着VCO控制电压0-15V变化,振荡频率在20KHz-80KHz之间变化。

  现在说说工作流程,我们选用的是CD4046内的鉴相器1(XOR异或门)。对于鉴相器1,当两个输人端信号Ui、Uo的电平状态相异时(即一个高电平,一个为低电平),输出端信号U为高电平;反之,Ui、Uo电平状态相同时(即两个均为高,或均为低电平),U输出为低电平。当Ui、Uo的相位差Δφ在0°-180°范围内变化时,U的脉冲宽度m亦随之改变,即占空比亦在改变。从比较器Ⅰ的输入和输出信号的波形(如图4所示)可知,其输出信号的频率等于输入信号频率的两倍,并且与两个输入信号之间的中心频率保持90°相移。从图中还可知,fout不一定是对称波形。对相位比较器Ⅰ,它要求Ui、Uo的占空比均为50%(即方波),这样才能使锁定范围为。如下图。

  关于死区发生器,本电路中,以U2 CD1四2输入端与非门和外围R8,R8,C10,C11共同组成,利用了RC充放电的延迟时间,将实时信号与延迟后的信号做与运算,得到一个合适的死区。死区时间大小由R8,R8,C10,C11共同决定。防爆电加热器如图参数,为1.6uS左右。在实际设计安装的时候,C10或C11应使用68pF的瓷片电容与5-45pF的可调电容并联,以方便调整两组驱动波形的死区对称性。

  关于图腾输出,从死区时间发生器输出的电平信号,仅有微弱的驱动能力,我们必须将其输出功率放大到一定程度才能有效地推动后续的GDT(门极驱动变压器)部分,Q1-Q8构成了双极性射极跟随器,俗称图腾柱,将较高的输入阻抗变换为极低的输出阻抗,适合驱动功率负载。R10.R11为上拉电阻,增强CD1输出的“1”电平的强度。有人会问设计两级图腾是否多余,我开始也这么认为,试验时单用一级TIP41,TIP42为图腾输出,测试后发现高电平平顶斜降带载后比较严重,分析为此型号晶体管的hFE过低引起,增加前级8050/8550推动后,平顶斜降消失。

  从PLL板图腾柱输出的两路倒相驱动信号,从GDT板的J1,J4接口输入,经过C1-C4隔直后送入脉冲隔离变压器T1-T4。R5,R6的存在,降低了隔直电容与变压器初级的振荡Q值,起到减少过冲和振铃的作用。从脉冲变压器输出的±15V的浮地脉冲,通过R1-R4限流缓冲(延长对Cgs的充电时间,减缓开通斜率)后,齐纳二极管ZD1-ZD8对脉冲进行双向钳位,后经由J2,J3,J5,J6端子输出到四个MOS管的GS极。这里因为关断期间为-15V电压,即便有少量的电平抖动也不会使MOS管异常开通,造成共态导通。注意,J2,J3用以驱动一个对角的MOS管,J5,J6用于驱动另一个对角的mos管。

  为了有效利用之前PLL板图腾输出的功率以及减小驱动板高度,这里采用4只脉冲变压器分别对4支管子进行驱动。脉冲变压器T1-T4均采用EE19磁芯,不开气隙,初级次级均用0.33mm漆包线T,为提高绕组间耐压起见,并未采用双线并绕。而是先绕初级,用耐高温胶带3层绝缘后再绕次级,采用密绕方式,注意图中+,-号表示的同名端。C1-C4均采用CBB无极性电容。其余按电路参数。

  1. PLL板整体功能检测。电路组装好后,先断开高压电源,将PLL板JP1跳线脚短路,使VCO输出固定频率的方波。然后用示波器分别检测四个MOS管的GS电压,看是否满足相位和幅度要求。对角的波形同相,同一臂的波形反相。幅度为±15V。如果此步骤无问题,进行下一步。如果波形相位异常,检测双绞线. 死区时间对称性调整。用示波器监测同一臂的两个MOS的GS电压,调节PLL板C10或C11并联的可调电容,使两个MOS的GS电压的高电平宽度基本一致即可。死区时间差异过大的话,容易造成在振荡的前几个周期内,就造成磁芯的累计偏磁而发生饱和炸管,隔直电容能减轻这一情况。

  3. VCO中心频率调整。PLL环路中,VCO的中心频率在谐振频率附近时,能获得的跟踪捕捉范围,因此有必要进行一个调整。槽路部分S1切换到上方触点,PLL板JP1跳线脚短路,使VCO控制电压处于0.5VCC,W2置于中点。通过自耦调压器将高压输入调节在30VAC。用万用表交流电流档监测高压输入电流,同时用示波器监测槽路部分J3接口电压,缓慢调节PLL板的W1,使J3电压为标准正弦波。此时,电流表的示数也为值。这时谐振频率与VCO中心频率基本相等。

  4. PLL锁定调整。将PLL板JP1跳线脚短路,使VCO的电压控制权转交给鉴相滤波网络。保持高压输入为30VAC,用示波器监测槽路部分J3接口电压波形形状和频率。此时用改锥在±一圈范围内调整W1,若示波器波形频率保持不变,形状仍然为良好的正弦波。则表示电路已近稳定入锁,如果无法锁定,交换槽路部分J1的接线再重复上述步骤。当看到电路锁定后,在加热线圈中放入螺丝刀杆,这时因为有较大的等效负载阻抗,波形幅度下降,但仍然保持良好的正弦波。如果此时失锁,可微调W1保持锁定。
防爆电加热器,电加热器,温度控制柜,镇江市春鹏电器有限公司http://www.zjcpdq.com/

在线客服
联系方式

热线电话

18921561668

上班时间

周一到周五

公司电话

18921561668

二维码
线